

## LA-UR-14-25493

Approved for public release; distribution is unlimited.

Optimal Kinodynamic Motion Planning in Environments with Unexpected Title:

Obstacles

Author(s):

Boardman, Beth Leigh Harden, Troy Anthony

Martinez, Sonia

Intended for: LANL Student Symposium

Issued: 2014-07-18



# Optimal Kinodynamic Motion Planning in Environments with Unexpected Obstacles

Beth Boardman,<sup>1,2</sup> Troy Harden,<sup>2</sup> and Sonia Martínez<sup>1</sup>

<sup>1</sup>Department of Mechanical and Aerospace Engineering University of California, San Diego

<sup>2</sup>Applied Engineering and Technology, Group 5 Los Alamos National Laboratory

July 16, 2014

#### **Engineering Institute**





## Overview

- Introduction
  - Motivation
  - Background
- Goal Tree Algorithm
- Optimality of the Goal Tree Algorithm
  - Characterizations of the New Sampling Region
- Goal Tree Algorithm Simulation
- Conclusion

## **Outline**

- Introduction
  - Motivation
  - Background
- Goal Tree Algorithm
- Optimality of the Goal Tree Algorithm
  - Characterizations of the New Sampling Region
- Goal Tree Algorithm Simulation
- Conclusion

## Motivation

7 Degree-of-freedom manipulator in a glovebox working with humans and/or other manipulators

- Real-time path planning
- Want optimal (near-optimal) path
- Environment has moving/changing obstacles
- Replan, or "fix," path quickly when obstructed by unexpected obstacles

## A Short Introduction to Graph Theory [Bullo, 2009]

- A graph is a set of vertices (nodes) and edges (order pair of vertices)
- Graphs can be undirected or directed (i.e. can travel forward but not backwards)
- The edges can be unweighted or weighted (i.e. cost to get from one node to another)



### **Useful Notation**

- Configuration, x: Complete specification of every position of the robot (i.e. position, velocity, orientation)
- Configuration Space, X: Set of all configurations
- Obstacle Space, X<sub>obs</sub>: Set of all configurations that will cause a collision with itself or an obstacle
- Free Space,  $X_{\text{free}}$ :  $X_{\text{free}} = X \setminus X_{\text{obs}}$
- $\partial S$ : Boundary of a set S
- $\mathscr{O}$ : New obstacle information (i.e.  $\mathscr{O} \not\subset X_{\text{obs}}$ )
- $\mathcal{T}_G$ : Tree rooted at  $x_G$
- $\mathcal{T}_l$ : Tree rooted at  $x_{l'}$

## What is Motion Planning? [Lavalle, 2006]

- Determining how a robot should move to complete a given task
- Types of motion planners
  - Discrete Planners (i.e. D\*, D\* Lite)
  - Bug Algorithms
  - Sampling-Based Planners
    - Static Environments (i.e. RRT, RRT\*, PRM, PRM\*, RRT#)
    - Dynamic Environments (i.e. DRRT, RRF, LRF, ERRT, MP-RRT)



Figure: RRT\* after 999 iterations.



Figure: Randomly sample from the configuration space. Let's zoom in!



Figure: Zoomed in section with new sample,  $x_{new}$ , point to be added.



Figure: Find all neighbors within a given radius.



Figure:  $x_{\text{new}}$ 's parent: lowest cost-to-come and collision free edge.



Figure: Rewire: Check neighbors as children of  $x_{new}$ .



Figure: 1000 iterations complete!



Figure: RRT\* after 10,000 iterations

## **Outline**

- Introduction
  - Motivation
  - Background
- Goal Tree Algorithm
- Optimality of the Goal Tree Algorithm
  - Characterizations of the New Sampling Region
- Goal Tree Algorithm Simulation
- Conclusion



## Goal Tree Algorithm Overview

#### Want to:

- Adapt the RRT\* to handle unexpected obstacles, O
- Reduce the runtime in comparison to rerunning the RRT\*
- Recover the optimal path from  $x_{l'}$  to  $x_{G}$

#### Do this by:

- Build a tree,  $\mathcal{T}_G$ , whose branches all lead to the goal w.r.t  $X_{obs}$
- Trim  $\mathcal{T}_G$  to reflect conflicts with  $\mathscr{O}$
- Build new RRT\* in "affected area," \( \mathcal{T}\_I \)
- Add branches from  $\mathcal{T}_G$  to  $\mathcal{T}_I$

## Goal Tree Algorithm Details

- Robot is executing a path from \( \mathcal{T}\_G \)
- $\mathscr{O}$  is found to be obstructing the path,  $\mathscr{T}_G$  is trimmed
- Robot initializes a new tree,  $\mathcal{I}_l$ , at its current configuration
- $\mathcal{T}_l$  is extended toward a random sample
- An attempt is made to connect the new vertex in  $\mathcal{T}_l$  to a vertex in  $\mathcal{T}_G$
- If the attempt is successful, then the entire path from the vertex in  $\mathcal{T}_G$  to  $x_G$  is added to  $\mathcal{T}_I$



Figure: An illustrative example of how the Goal Tree algorithm works.

## **Outline**

- Introduction
  - Motivation
  - Background
- Goal Tree Algorithm
- 3 Optimality of the Goal Tree Algorithm
  - Characterizations of the New Sampling Region
- 4 Goal Tree Algorithm Simulation
- Conclusion

## **Optimality Overview**

- Where can  $\mathcal{T}_l$  sample to recover the optimal path?
  - In"affected area"
  - Around 𝒪
- How can we reduce the algorithm runtime
  - Sample in a small region, R, (i.e.  $R \subsetneq X$ )
  - Limiting the collision checks to only obstacles in R



Vertex positions of a typical  $\mathcal{T}_G$  before  $\mathcal{O}$  is found.



Vertex positions of a typical  $\mathcal{T}_G$  after  $\mathcal{O}$  is found.

## Robot with No Differential Constraints: Theorem

#### **Theorem**

Let X be a d-dimensional C-space such that  $d \in \mathbb{N}$  and  $d \ge 2$ . Let the initial obstacle space be  $X_{\text{obs}}$  and let  $\mathscr{O} \not\subset X_{\text{obs}}$  be new obstacle information. For simplicity, assume that  $\mathscr{O} \cap X_{\text{obs}} = \varnothing$ . If

- X is the Euclidean metric space,
- $\mathcal{O} \subset R \subset X$ ,
- R is convex, and

then the GT algorithm will converge to a globally optimal path,  $\pi$ , as  $n \to \infty$  by constructing  $\mathcal{T}_{l'}$  using R and the  $\mathscr{O}$  information and employing  $\mathcal{T}_{G}$  with the previous  $X_{\text{obs}}$ .

## Robot with No Differential Constraints: Proof



Figure: The gray lines represent possible paths to  $x_G$  with the optimal path in black. The boundary of a possible new sampling region is in blue. The region defined by the blue has all the properties specified in the previous theorem.

## Robot with General Differential Constraints

#### Definition

The shadow of  $x_G$  on  $\mathscr{O}$ ,  $\mathscr{S}_{\mathscr{O}}$ , is the envelope or hull, as defined by position rather than configuration, formed by the geodesics from all configurations in  $X_{\text{free}}$  going to  $x_G$  that are in conflict with  $\mathscr{O}$ .

#### Theorem

Let  $\mathscr{S}_{\mathscr{O}}$  be as in Definition 1. If the Goal Tree algorithm uses  $\mathscr{S}_{\mathscr{O}}$  as the new sampling region to build  $\mathscr{T}_{l}$ , then it will converge to a globally optimal path as  $n \to \infty$ .

**Sketch of Proof** Can get from  $x_{l'}$  to every outgoing configuration (configuration leaving R); from  $\mathcal{T}_{l'}$  construction. Every outgoing configuration has a path to  $x_{G}$  from  $\mathcal{T}_{G}$ ; by the definition of  $\mathcal{F}_{\mathscr{O}}$ .



Possible new sampling region for a Dubins' vehicle (car with no reverse). Each circle has a radius of  $2\rho$  ( $\rho$  is the minimum turning radius). The boundary of R is in blue.



Let the green line be a trajectory from  $x_{l'}$  to some other configuration inside R.



Take circles of radius  $\rho$  (or greater) and place them tangent to the path and  $\partial R$  as shown.



Create a new path that follows the old the circles, and  $\partial R$ . By construction this new path (yellow) has a shorter length than the original one (green).

## **Outline**

- Introduction
  - Motivation
  - Background
- Goal Tree Algorithm
- Optimality of the Goal Tree Algorithm
  - Characterizations of the New Sampling Region
- Goal Tree Algorithm Simulation
- Conclusion



- Configuration: x-position, y-position, and orientation  $\theta$
- Minimum turning radius, ρ
- Constant speed, v
- Control input, u

$$\dot{x}(t) = v\cos(\theta) \tag{1a}$$

$$\dot{y}(t) = v \sin(\theta) \tag{1b}$$

$$\dot{ heta}(t)=u, \quad |u|\leq rac{v}{
ho}, \qquad ext{(1c)}$$



Figure: Minimum cost path to  $x_G$  as a function of algorithm runtime, averaged over 100 simulations, for a Dubins' vehicle.

runtime (min)

## **Outline**

- Introduction
  - Motivation
  - Background
- Goal Tree Algorithm
- Optimality of the Goal Tree Algorithm
  - Characterizations of the New Sampling Region
- Goal Tree Algorithm Simulation
- Conclusion

## Summary

- Introduced the Goal Tree algorithm for replanning in environments with unexpected obstacles
- The GT is asymptotically optimal
- A new sampling region R is proven to allow  $\mathcal{T}_l$  to recover the optimal path
- Simulation results from the Dubins' vehicle show improved performance over the RRT\*

### **Future Work**

- Characterize R for higher dimensional systems with differential constraints
- How to determine \( \mathcal{S} \) efficiently for use with the GT
- Extend the GT for use with multiple robots with multiple tasks
  - Root a tree at each task location
  - Each robot builds its own tree rooted at its current location
  - Possibly integrate cooperative control ideas

#### References



F. Bullo, J. Cortés, and S. Martínez (2009)

Distributed Control of Robotic Networks

Princeton University Press; Applied Mathematics Series http://coordinationbook.info



S. LaValle (2006)

Planning Algorithms

Cambridge University Press

http://planning.cs.uiuc.edu



S. Karaman and E. Frazzoli (2011)

Sampling-Based Algorithms for Optimal Motion Planning

The International Journal of Robotics Research; Vol 30, No. 7, pgs 846–894